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ABSTRACT 

Target tracking and Fusion Engines often are crucial components in modern military systems such as for 
instance for reconnaissance, surveillance, and electronic warfare. Despite the advances of machine learning 
approaches for various applications, for safety and security systems model based approaches are still 
preferred for the sake of explicability, interpretability, certifiability, and performance prediction in 
unforeseen scenarios. Since a closed- form of the Bayesian estimation approach is intractable in general, 
approximate methods have to be applied. Kalman or particle based approaches have the drawback of either 
a Gaussian approximation or a curse of dimensionality which both leads to a reduction in the performance 
in challenging scenarios. An approach to overcome this situation is state estimation using decomposed 
tensors. In this paper, the advantages of tensor decomposition methods based on automatic differentiation 
are demonstrated for target tracking in big data scenarios. Since the Canonical Polyadic Decomposition 
allows a highly effective and yet powerful representation of multi target information, the problem of state 
estimation can be applied even for a large number of targets in dense scenarios, in which conventional 
methods such as Gaussian Mixture based or particle based approaches would fail. 

1. INTRODUCTION

In recent decades, sensor technology has become increasingly important for defense applications, and it is 
obvious that this trend will continue in the future. Defense-related sensors have conquered many novel 
applications, and existing applications have been brought to a much higher level of technical complexity. 
Nowadays, the distinction of information processing layers – once introduced to distinguish between sensor 
information and signal processing – was increasingly dissolved in favor of better performances. As a result, 
existing target tracking and wide-area surveillance methods do not address the challenges of today's sensor 
data in complex scenarios.  

Due to the advances in nowadays sensor technology, the requirements and challenges for a data fusion 
engine have evolved since the very early years of this discipline in the 1960s [1]. Back then, data fusion 
referred to the compensation of the measurement error in air surveillance applications. This error indeed was 
uncorrelated white noise, since its dominant components were coming from thermal fluctuations. Moreover, 
the number of sensors involved was low – if not singular – and only a few objects were observed in parallel. 
In addition, the number of false alarms was high to achieve adequate detection probabilities. It can be seen 
that classical models for multiple target tracking are well suited to address these issues: Poisson distributed, 
independent and identically distributed clutter models and zero mean, Gaussian distributed noise allow 
analytical solutions of the underlying formulas and are therefore the basis for fast and reliable filtering 
models [2, 3].  

However, challenges have changed. Today, often heterogenous sensors such as radar, lidar, E/O and I/R 
cameras and others are combined to achieve robustness and a high level of perception. Also, sensor data 
fusion is applied to a great variety of applications where for instance intelligence data from social media or 
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computer program logs for intrusion detection systems are combined to achieve situational awareness. Due 
to the high accuracy and resolution capacity of nowadays sensors, the number of observed objects is 
increased enormously, while the measurement error is often reduced to an almost irrelevant level [5, 6]. 

The key to robust and consistent target tracking in nowadays applications is the processing of large amounts 
of real-time sensor data using advanced, parallelizable sensor data fusion algorithms, which are optimized 
for big data processing [7]. Therefore, it is necessary to replace decades-old paradigms, which are based on 
the assumption that entities are most effectively represented in the form of parameterized probability 
densities. This is proven to be a promising strategy for a few to moderately many targets. In extreme 
scenarios with a high number of objects in a confined space, however, this is no longer feasible. For next 
generation methods of target tracking and extraction for big data applications, processing speed and 
parallelization must be given top priority, and simplifications and approximations must replace exact 
solutions whenever useful. In particular, it should be noted that the calculation of the extracted information 
relies on simple operations, allowing parallel use of GPUs.  

In this paper, we present the application of automatic differentiation algorithms for tensorized data fusion 
probability densities. This provides the basis for information analysis and decision support so that target 
identification, classification or anomalies detection can be derived. 

2. TARGET TRACKING IN BIG DATA  

The theory of target tracking has exposed a growing family of algorithms to compute the probability density 
function (pdf) of a system state conditioned on noise corrupted sensor observations. An estimate of the state 
is then obtained for instance by taking the mean of the pdf. The corresponding covariance matrix which is 
the expected estimation error squared additionally provides a measure of accuracy for the estimate. Bayesian 
estimation is the framework of recursive filtering methodologies, which allows to process a current 
measurement data in terms of a prior or initial density and a measurement likelihood function, which 
statistically describes the performance of the sensor. Thus, a tracking algorithm is an iterative updating 
scheme for calculating a conditional a-posteriori pdf hat represents all available knowledge on the object 
state at the present time. The densities are explicitly conditioned on the sensor data time series. The iterative 
scheme consists of two processing steps per update cycle, referred to as prediction and filtering. The 
manipulation of the probability densities is given by the following basic equations (see [2, 3] for instance). 

Prediction. Assuming the Markov property of the underlying target state, the prediction density is obtained 
by combining the evolution model with the previous filtering: 

Filtering. The a-posteriori pdf is computed by means of the Bayes theorem, which allows to combine the 
likelihood of the current sensor data with the prior density from the prediction step: 
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I. Introduction

The ever lasting trend of ubiquitous connected sensors
in our life entails a great demand for sophisticated
algorithms in sensor data fusion, which are designed to
reveal information on parameters of interest based on
error prone, contradicting, and incomplete data. Since
multiple decades, the Kalman filter serves as the working
horse of target tracking algorithms [1], [2] in both, civil
and military applications.

The theory of target tracking has exposed a growing
family of algorithms to compute the probability density
function (pdf) of a system state conditioned on noise
corrupted sensor observations. An estimate of the state
is then obtained by taking the mean of the pdf1. The
corresponding covariance matrix which is the expected
estimation error squared additionally provides a mea-
sure of accuracy for the estimate. Bayesian estimation
is the framework of recursive filtering methodologies,
which allows to process a current measurement data in
terms of a prior or initial density and a measurement
likelihood function, which statistically describes the per-
formance of the sensor. Thus, a tracking algorithm is an
iterative updating scheme for calculating a conditional
pdf p(xk |Zk) that represents all available knowledge on
the object state xk at some time tk , which typically is
chosen as the present time. The densities are explicitly
conditioned on the sensor data time series Zk . The

1Depending on the scenario, for instance the expectation value, the
maximum value, the median, or other statistics of the pdf can be used.

iterative scheme consists of two processing steps per
update cycle, referred to as prediction and filtering. The
manipulation of the probability densities is given by the
following basic equations (see [1], [2] for instance).

Prediction. Assuming the Markov property of the un-
derlying object state, the prediction density p(xk |Zk�1)
is obtained by combining the evolution model p(xk |xk�1)
with the previous filtering density p(xk�1|Zk�1):

p(xk�1|Zk�1)
evolution model��������������!

constraints
p(xk |Zk�1)

p(xk |Zk�1) =
Z

dxk�1 p(xk |xk�1)
|     {z     }

evolution model

p(xk�1|Zk�1)
|         {z         }

previous filtering

. (1)

Filtering. The filtering density p(xk |Zk) is obtained
using Bayes theorem by combining the sensor model
p(zk |xk), also called the “likelihood function”, with the
prediction density p(xk |Zk�1) according to:

p(xk |Zk�1)
current sensor data�����������������!

sensor model
p(xk |Zk)

p(xk |Zk) =
p(zk |xk) p(xk |Zk�1)R

dxk p(zk |xk)
| {z }

sensor model

p(xk |Zk�1)
| {z }

prediction

. (2)

According to this paradigm, an object track represents
all relevant knowledge on a time varying object state of
interest, including its history and measures that describe
the quality of this knowledge. As a technical term,
‘track’ is therefore either a synonym for the collection
of densities p(xl |Zl ), l = 1, . . . , k, . . ., or of suitably chosen
parameters characterizing them, such as estimates and
the corresponding estimation error covariance matrices.

The inherent assumption in the Kalman filter ap-
proach of a linear dependency between the measurement
space of the sensor and the state space of the considered
system is not given in most practical applications. As a
consequence, particle filters based on stochastic samples
for instance have gained much attention, but it soon be-
came clear that this approach is hindered by the ‘curse of

dimensionality’ in high dimensional problems. For non–
linear scenarios, only approximate solutions are feasible.
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According to this paradigm, an object track represents all relevant knowledge on a time varying object state 
of interest, including its history and measures that describe the quality of this knowledge. As a technical 
term, ‘track’ is therefore either a synonym for the collection of densities for all time instances within a 
trajectory or of suitably chosen parameters characterizing them, such as estimates and the corresponding 
estimation error covariance matrices. 

The inherent assumption in the Kalman filter approach of a linear dependency between the measurement 
space of the sensor and the state space of the considered system is not given in most practical applications. 
As a consequence, numerical or analytical approximations have been proposed in the past decades in various 
forms. Most prominent might be the first-order Taylor approximation, the Extended Kalman Filter (EKF), 
which has low computational costs due to its analytic solution of the prediction and filtering steps (see [1] for 
instance). The performance of the linearization can be improved by means of deterministic samples chosen at 
the local neighborhood of the current estimate. This algorithm is known as the Unscented Kalman Filter 
(UKF). The term Particle filter (PF) subsumes all kinds of numerical solutions with non–deterministic 
samples. Here, knowledge about the state typically is represented by a set of state samples, which implies 
that the density is approximated by a Dirac– mixture. Because the process noise terms are simulated by 
means of appropriately sampled random vectors, these methods are also known as sequential Monte–Carlo 
(SMC) methods. However, but it soon became clear that this approach is hindered by the ‘curse of 
dimensionality’ in high dimensional problems. For this reason, PF approaches are usually not well suited for 
target tracking in big data since each track has to be represented with a high number of samples such that its 
density is approximated well enough. Existing multi target tracking filters are often based on Gaussian 
Mixtures (GM), since they allow an efficient computation of the multi target density or so-called “intensity” 
function. Actually these methods scale quite well in the case of well-separated targets, however, the 
numerical complexity grows exponentially in dense scenarios due to association problems or GM component 
explosions. As a consequence, these methods are not ready for nowadays technology, which provide sensor 
data with high resolutions and wide area observations. 

3. TENSOR DECOMPOSOTION FOR TARGET TRACKING

In the recent past, tracking algorithms based on tensor decompositions have been proposed to overcome this 
problem [3-5]. Based on a discretization of the state space, the density becomes a multi-way tensor. The 
prior then is obtained by solving the Fokker–Planck–Equation (FPE). Challa and Bar-Shalom for instance 
use finite differences to obtain the solution of the FPE and show that a consistent result is obtained even for 
highly non–linear problems with large noise variances. This static approach has not become as popular as the 
particle filters due to the higher computational load. There is a notable change in the way of thinking since it 
was discovered that separated representations of discretized multi–dimensional functions have surprisingly 
good approximation properties. Nowadays it may even be seen as the only known way to overcome the curse 
of dimensionality. In other words, approximations by separable functions are of particular interest when the 
dimensionality of the problem becomes large. It is well–known that by means of a Canonical Polyadic 
Decomposition (CPD)1 of a discretized density a computationally effective representation can be achieved 
[8].  

1 The CPD is also known as the CANDECOMP/PARAFAC decomposition. 
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I. Introduction

The ever lasting trend of ubiquitous connected sensors
in our life entails a great demand for sophisticated
algorithms in sensor data fusion, which are designed to
reveal information on parameters of interest based on
error prone, contradicting, and incomplete data. Since
multiple decades, the Kalman filter serves as the working
horse of target tracking algorithms [1], [2] in both, civil
and military applications.

The theory of target tracking has exposed a growing
family of algorithms to compute the probability density
function (pdf) of a system state conditioned on noise
corrupted sensor observations. An estimate of the state
is then obtained by taking the mean of the pdf1. The
corresponding covariance matrix which is the expected
estimation error squared additionally provides a mea-
sure of accuracy for the estimate. Bayesian estimation
is the framework of recursive filtering methodologies,
which allows to process a current measurement data in
terms of a prior or initial density and a measurement
likelihood function, which statistically describes the per-
formance of the sensor. Thus, a tracking algorithm is an
iterative updating scheme for calculating a conditional
pdf p(xk |Zk) that represents all available knowledge on
the object state xk at some time tk , which typically is
chosen as the present time. The densities are explicitly
conditioned on the sensor data time series Zk . The

1Depending on the scenario, for instance the expectation value, the
maximum value, the median, or other statistics of the pdf can be used.

iterative scheme consists of two processing steps per
update cycle, referred to as prediction and filtering. The
manipulation of the probability densities is given by the
following basic equations (see [1], [2] for instance).

Prediction. Assuming the Markov property of the un-
derlying object state, the prediction density p(xk |Zk�1)
is obtained by combining the evolution model p(xk |xk�1)
with the previous filtering density p(xk�1|Zk�1):

p(xk�1|Zk�1)
evolution model��������������!

constraints
p(xk |Zk�1)

p(xk |Zk�1) =
Z

dxk�1 p(xk |xk�1)
| {z }

evolution model

p(xk�1|Zk�1)
| {z }

previous filtering

. (1)

Filtering. The filtering density p(xk |Zk) is obtained
using Bayes theorem by combining the sensor model
p(zk |xk), also called the “likelihood function”, with the
prediction density p(xk |Zk�1) according to:

p(xk |Zk�1)
current sensor data�����������������!

sensor model
p(xk |Zk)

p(xk |Zk) =
p(zk |xk) p(xk |Zk�1)R

dxk p(zk |xk)
|   {z   }

sensor model

p(xk |Zk�1)
|      {z      }

prediction

. (2)

According to this paradigm, an object track represents
all relevant knowledge on a time varying object state of
interest, including its history and measures that describe
the quality of this knowledge. As a technical term,
‘track’ is therefore either a synonym for the collection
of densities p(xl |Zl ), l = 1, . . . , k, . . ., or of suitably chosen
parameters characterizing them, such as estimates and
the corresponding estimation error covariance matrices.

The inherent assumption in the Kalman filter ap-
proach of a linear dependency between the measurement
space of the sensor and the state space of the considered
system is not given in most practical applications. As a
consequence, particle filters based on stochastic samples
for instance have gained much attention, but it soon be-
came clear that this approach is hindered by the ‘curse of

dimensionality’ in high dimensional problems. For non–
linear scenarios, only approximate solutions are feasible.
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The factorization of a N-way tensor into N factor matrices A(n) with columns a(1)
1 , … , a(1)

R is given by the sum 
of outer products of: 

 

This representation is schematically visualized in Figure 1 for N = 2 and N = 3, respectively.: 

 

Figure 1: Schematic decomposition of a tensor by a factorization into a sum of outer products of 
vectors. 

The time evolution of a density as a result of the Fokker-Planck Equation is shown in Figure 2. It can be seen 
that the density becomes broader while time passes, which reflects the stochastic nature of the underlying 
motion model. 

   

Figure 2: Exemplary time evolution of a target density in 2D using CPD tensors. The predicted 
tensor is computed as the solution of a Fokker-Planck Equation. 

The filtering step, which includes the current measurements into the data fusion process, is obtained by a 
point-wise multiplication of the sensor model and the prediction density. The advantage of the CPD 
approach is that on the one hand the degree of approximation can well be adjusted to the performance of the 
underlying computation system: a smaller discretization step size yields a better representation of the 
information and more CPD components allow the computation of complex functions. On the other hand, the 
curse of dimensionality is avoided to a degree by means of the factorization along all dimensions. Also, 
complex associations of sensor data to track instances can be avoided by multi target point set methods. As a 
consequence, tensor decompositions are promising candidates for tracking targets in big data scenarios. An 
application in a multi target scenario is straight forward, since also intensity functions can be represented 
using tensor decompositions. These functions are the first-moment approximation of a multi target density, 

3

aims to rearrange this tensor to be a matrix Yr×c of size
M∏

k=1
Irk ×

N−M∏

l=1
Icl whose entries

( j1, j2) are given by Yr×c( j1, j2) = Y(ir, ic), where ir = [ir1 . . . irM ], ic = [ic1 . . . icN−M ],
j1 = ivec(ir, Ir), j2 = ivec(ic, Ic).

Remark 2.1.
1. If c = [c1 < c2 < · · · < cN−M], then Yr×c is simplified to Y(r).
2. If r = n and c = [1, . . . , n − 1, n + 1, . . . ,N], we have mode-n matricization Yr×c =
Y(n).

3. Yr×c = YTc×r.
4. For r = [1, 2, . . . , n], c = [n+ 1, n+ 2, . . . ,N], ∀n, Yr×c = Y(r) can be expressed and

efficiently performed by reshape, that is

Y(r) = reshape(Y , [Jn,Kn]), Jn =
n∏

k=1
Ik, Kn =

N∏

k=n+1
Ik. (2.3)

Definition 2.3. (mode-n tensor-vector product) The mode-n multiplication of a tensor
Y ∈ RI1×I2×···×IN by a vector a ∈ RIn returns an (N − 1)-D tensorZ defined as

vec(Z) = YT(n) a. (2.4)

Symbolically, the product is denoted by

Z = Y ×̄n a ∈ RI1×···×In−1×In+1×···×IN . (2.5)

Tensor-vector product of a tensor Y with a set of N column vectors {a} =
{
a(1), a(2), . . . ,

a(N)
}
is denoted by

Y ×̄ {a} = Y ×̄1 a(1) ×̄2 a(2) · · · ×̄N a(N) . (2.6)

Definition 2.4. (CANDECOMP/PARAFAC (CP)) Factorize a given N-th order data
tensorY ∈ RI1×I2×···×IN into a set of N componentmatrices (factors): A(n) = [a(n)1 , a

(n)
2 , . . . , a

(n)
R ]

∈ RIn×R, (n = 1, 2, . . . ,N) representing the common (loading) factors [8, 16, 17], that is,

Y ≈

R∑

r=1
a(1)r ◦ a(2)r ◦ . . . ◦ a(N)r = Ŷ , (2.7)

where symbol “◦” denotes outer product. Tensor Ŷ is an approximation of the data tensor
Y . Mode-n matricization of Y can be represented as:

Y(n) ≈ A(n)
(
⊙
k!n
A(k)

)T
.

2.1. Complexity of Tensor Unfoldings. Tensor unfoldings are to rearrange entries of
tensors to be matrices. We note that entries of the tensorY are stored as a long vector vec(Y)
of the size

∏N
n=1 In in memory. From this view point, tensor unfolding is to change the order

to entries in its vectorization. The more the changes of entries take place, the slower the
unfolding are. Moreover, reading data (entries) stored in non-contiguous blocks will be at a
slower rate than accessing data stored in a contiguous block.

= + + + 

… 

= + + + 

… 
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that means they code the density function of the number of targets in the given field of view. The number of 
tracks can easily be obtained via integration, which can be done highly efficiently with tensor decomposition 
representations.  

4. AUTOMATIC DIFFERENTIATION FOR FUSION ENGINES 

The challenge of fusion engines is to incorporate heterogenous sensor information over time, where the 
measurements are informative with respect to a system state xt of interest at a given time t. Often, dynamic 
systems such as objects with kinematic motion for instance are considered. A general model to describe the 
dynamic evolution of the system in time is the following stochastic differential equation: 

 

where f is the drift vector, G is the diffusion coefficients matrix, and wt is a Wiener process. For a given 
initial pdf of the state at time t0, the time evolution is governed by the Fokker-Planck Equation (FPE) of the 
following form: 

 

If the pdf p is given in CPD form and the FPE coefficients f and G can be represented in separable form, 
then one obtains an FPE operator such that 

 

In the recent literature, two different approaches have been proposed to compute a numerical solution of the 
FPE for CPD tensors. The first solution is based on the numerical minimization, where the FPE operator is 
augmented with a differentiation matrix Dt for the time dimension, which is accumulated with the pdf [8, 9]: 

 

However, the trivial solution p = 0 is included in the solution space. Therefore, additional constraint terms 
have to be added in order to have a non-trivial solution. Three such constraints have been identified in [7], 
one for initial value, boundary value and normality each. This leads to the new formulation of the 
minimization objective function: 

Here, the first term is the FPE, the second enforces the correct boundary condition at t = 0, the third corrects 
the boundary conditions with respect to the state variables x and the last term is for the normalization such 
that p integrates to one at each time. In order to achieve a solution p in CPD form, the objective function has 
to be minimized with respect to the representation parameters [A(1), …, A(N)]. 

[6]. Nowadays it may even be seen as the only known
way to overcome the curse of dimensionality [7]. In
other words, approximations by separable functions are
of particular interest when the dimensionality of the
problem becomes large. It is nowadays well–known that
by means of a Canonical Polyadic Decomposition (CPD)1

of a discretized density a computationally e↵ective rep-
resentation can be achieved. To the author’s knowledge, a
first attempt to integrate the CPD tensor decomposition
into a Bayesian estimation framework was given by Sun
and Kumar in [8]. In [9], their approach is extended to
a multi-dimensional target tracking problem. A Fokker-
Plank operator for the CPD was introduced in [10].
This operator was applied to the Hierarchical Tensor
Decomposition (HTD) in [11].
This paper addresses the problem of computing the

CPD form of a multi-variate Gaussian density function.
This is important to incorporate a Gaussian distributed
prior for instance and can well be applied to Gaussian
distributed likelihood functions.

Structure: This paper is structured as follows. In Sec-
tion II, some background information on probabilistic
tensors and their decompositions are revisited. The for-
mulation of the problem is then exposed in Section III.
In Section IV, the algorithm for the CPD form of a
multivariate Gaussian is developed. A brief evaluation
in terms of a visual comparison is given in Section V.

II. Background on Tensor Decompositions

In this paper, it is assumed that the pdf is to be com-
puted in discretized form. Based on a suitable discretiza-
tion of the state space to points [xd ]nd for d = 1, . . . ,D
and nd = 1, . . . ,ND the pdf becomes a D-way tensor of
dimension N1 ⇥ · · ·⇥ND :

p(x) ⇡ [p([xd ]nd )]n1,...,nD (3)

=: P 2 RN1⇥···⇥ND . (4)

Since this representation would require to compute and
store

QD
d=1Nd entries of the tensor, a number which

is exponential in D, e�cient data compression models
(“autoencoders”) have to be applied for high dimensional
problems. An important and increasingly popular com-
pact representation is the approximation using a sum of
rank one components, which is known as the CPD:

P =
RX

r=1

ar1 � · · · � arD, (5)

where R is the rank of the CPD and ‘�’ is the outer
product of the vectors ard , which are also called “loading
vectors”. Though there always exists an exact CPD, often
numerical approximations with a reduced number of
components R are used, since the exact representation

1The CPD is also known as CANDECOMP and PARAFAC, since it
was found and applied in di↵erent sciences in parallel.

is NP-hard to find [12]. We will use the short notation
~U(1), . . . ,U(D)� for the CPD representation from above,
where U(d) = (a1d , . . . ,a

R
d ) consists of all R loading vectors

for all d.
The vectorization of a tensor is the stacked vector of

all entries in reverse lexicographical order. For the CPD,
it can be obtained directly by means of the Kronecker
product ‘⌦’:

vec(P ) =
RX

r=1

arD ⌦ · · ·⌦ ar1 (6)

However, optimization based methods for the computa-
tion of a high-dimensional CPD tensor are ine�cient,
since they require to store the full tensor in the memory
for the computation of the current approximation error.
In this paper, we want to address a novel approach,
which uses analytical shortcuts for the computation.
Eventually, however, numerical approximations have to
be applied, too, in order to keep the number R of loading
vectors manageable.

III. Formulation of the Problem

A dynamical system is considered where the state at
time t is given by the vector xt 2 RD . The entries of the
state vector can be the Cartesian coordinates and motion
parameters of one or multiple targets for instance. It
is assumed that the time evolution of the system can
be described by a continuous time Îto process which is
given by the stochastic di↵erential equation

dxt = f(x)dt +G(x)dwt , (7)

where f : RD ! RD is the drift vector, G : RD ! RD⇥M

is the di↵usion coe�cients matrix, and wt is a Wiener
process in RM with covariance It.

For a given initial pdf p(x0) of the state at time t0,
the time evolution is governed by the Fokker-Planck
Equation (FPE) with coe�cients

@tp(x) =�
DX

i=1

@xi (fi (x)p(x))

+
1
2

DX

i,j=1

@xi@xj
⇣
[G(x)G(x)>]i,jp(x)

⌘
. (8)

Thus, the prediction of a given pdf and time interval t
can be obtained by solving the partial di↵erential equa-
tion (8). For the Fokker-Planck operator introduced in
[10], it is assumed that each entry of the drift vector and

[6]. Nowadays it may even be seen as the only known
way to overcome the curse of dimensionality [7]. In
other words, approximations by separable functions are
of particular interest when the dimensionality of the
problem becomes large. It is nowadays well–known that
by means of a Canonical Polyadic Decomposition (CPD)1

of a discretized density a computationally e↵ective rep-
resentation can be achieved. To the author’s knowledge, a
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into a Bayesian estimation framework was given by Sun
and Kumar in [8]. In [9], their approach is extended to
a multi-dimensional target tracking problem. A Fokker-
Plank operator for the CPD was introduced in [10].
This operator was applied to the Hierarchical Tensor
Decomposition (HTD) in [11].
This paper addresses the problem of computing the

CPD form of a multi-variate Gaussian density function.
This is important to incorporate a Gaussian distributed
prior for instance and can well be applied to Gaussian
distributed likelihood functions.

Structure: This paper is structured as follows. In Sec-
tion II, some background information on probabilistic
tensors and their decompositions are revisited. The for-
mulation of the problem is then exposed in Section III.
In Section IV, the algorithm for the CPD form of a
multivariate Gaussian is developed. A brief evaluation
in terms of a visual comparison is given in Section V.

II. Background on Tensor Decompositions

In this paper, it is assumed that the pdf is to be com-
puted in discretized form. Based on a suitable discretiza-
tion of the state space to points [xd ]nd for d = 1, . . . ,D
and nd = 1, . . . ,ND the pdf becomes a D-way tensor of
dimension N1 ⇥ · · ·⇥ND :

p(x) ⇡ [p([xd ]nd )]n1,...,nD (3)

=: P 2 RN1⇥···⇥ND . (4)

Since this representation would require to compute and
store

QD
d=1Nd entries of the tensor, a number which

is exponential in D, e�cient data compression models
(“autoencoders”) have to be applied for high dimensional
problems. An important and increasingly popular com-
pact representation is the approximation using a sum of
rank one components, which is known as the CPD:

P =
RX

r=1

ar1 � · · · � arD, (5)

where R is the rank of the CPD and ‘�’ is the outer
product of the vectors ard , which are also called “loading
vectors”. Though there always exists an exact CPD, often
numerical approximations with a reduced number of
components R are used, since the exact representation

1The CPD is also known as CANDECOMP and PARAFAC, since it
was found and applied in di↵erent sciences in parallel.

is NP-hard to find [12]. We will use the short notation
~U(1), . . . ,U(D)� for the CPD representation from above,
where U(d) = (a1d , . . . ,a

R
d ) consists of all R loading vectors

for all d.
The vectorization of a tensor is the stacked vector of

all entries in reverse lexicographical order. For the CPD,
it can be obtained directly by means of the Kronecker
product ‘⌦’:

vec(P ) =
RX

r=1

arD ⌦ · · ·⌦ ar1 (6)

However, optimization based methods for the computa-
tion of a high-dimensional CPD tensor are ine�cient,
since they require to store the full tensor in the memory
for the computation of the current approximation error.
In this paper, we want to address a novel approach,
which uses analytical shortcuts for the computation.
Eventually, however, numerical approximations have to
be applied, too, in order to keep the number R of loading
vectors manageable.

III. Formulation of the Problem

A dynamical system is considered where the state at
time t is given by the vector xt 2 RD . The entries of the
state vector can be the Cartesian coordinates and motion
parameters of one or multiple targets for instance. It
is assumed that the time evolution of the system can
be described by a continuous time Îto process which is
given by the stochastic di↵erential equation

dxt = f(x)dt +G(x)dwt , (7)

where f : RD ! RD is the drift vector, G : RD ! RD⇥M

is the di↵usion coe�cients matrix, and wt is a Wiener
process in RM with covariance It.

For a given initial pdf p(x0) of the state at time t0,
the time evolution is governed by the Fokker-Planck
Equation (FPE) with coe�cients

@tp(x) =�
DX

i=1

@xi (fi (x)p(x))

+
1
2

DX

i,j=1

@xi@xj
⇣
[G(x)G(x)>]i,jp(x)

⌘
. (8)

Thus, the prediction of a given pdf and time interval t
can be obtained by solving the partial di↵erential equa-
tion (8). For the Fokker-Planck operator introduced in
[10], it is assumed that each entry of the drift vector and

For higher dimensions the problem of finding a decomposed
representation becomes NP–hard [22]. However, numerical so-
lutions such as the Alternating Least Squares (ALS) algorithm
exist [23], which yield satisfying results for the problems
addressed here in manageable time. For a fixed dimension d, it
is assumed that the state space can be discretized into Nd grid
points. These can be uniformly spaced with a fixed step size
of xd or chosen specifically for a numerical differentiation
such as Chebyshev polynomials [18]. The probability density
function restricted to the discretized state space points yields
a D-way tensor, which approximates the original function:

p(xk|Zk) ⇡ [p([xd]i|Zk)]n1,...,nD (4)

Throughout this paper, this tensor is represented in decom-
posed form. Thus, the pdf at time tk is approximated, again,
by a CPD factorization:

[p([xd]i|Zk)]n1,...,nD ⇡
LX

l=1

⇢
(tk)
1,l � . . . � ⇢(tk)D,l , (5)

where L is the number of components, which usually is a fixed
user parameter and dependent on the computational power of
the fusion hardware and processing time constraints, ‘�’ is the
outer product and ⇢

(tk)
d,l are the so–called loading vectors of

dimension Nd ⇥ 1 for each d = 1, . . . , D and l = 1 . . . , L.
By means of an appropriate index function (see [19] for

instance), an equivalent representation of a tensor can be
achieved in its vectorized form:

p(xk|Zk) ⇡
LX

l=1

DO

d=1

⇢
(tk)
d,l , (6)

where ‘⌦’ is the Kronecker product. For the sake of notational
simplicity, the latter form will be used throughout this paper.

It is assumed that the time evolution of the system is
described by a continuous–time stochastic system given by

dx = f(x, t)dt+G(x, t)dw, (7)

where f is the drift vector, G is the matrix of all diffusion
coefficients, and dw are the increments of a multivariate
Brownian motion with covariance Qt.

The measurement model is a general possibly non–linear
function h such that the observation at discrete instants of
time tk are given by

zk = h(xk, tk,vk), (8)

where vk is a random variable, which represents the measure-
ment noise of the sensor.

It is well–known that the posterior pdf conditioned on all
sensor data up to time tk can be computed recursively by
means of a prediction–filtering cycle. In recent publications, a
tensor decomposition based state estimation scheme has been
proposed [17], [18], [19], which shall be summarized in the
remainder of this section.

a) Initialization: For the initialization, it is assumed that
the initial pdf is given in CPD form:

p(x0|Z0) =
LX

l=1

DO

d=1

⇢
(t0)
d,l . (9)

This can either be achieved by an analytical decomposition
into sums of products of a given pdf evaluated at the dis-
cretization points or numerically by the ALS for instance.

b) Prediction: It is well–known that the time evolution
of the pdf is described by a Fokker–Planck–Equation (FPE),
for which the drift and diffusion parameters are given by the
stochastic differential equation in (7):

@p

@t
= �

DX

i=1

@([f ]ip)

@xi
+

1

2

DX

i,j=1

@
2([B]i,jp)

@xi@xj
, (10)

where B = GQG
> is the combined diffusion coefficient

matrix. In the above equation, [f ]i denotes the ith entry of
the drift vector and [B]i,j is the entry in the ith row and
jth column of the diffusion matrix. It is assumed that all
components can be represented in separable form such that

[f ]i(x) =
KiX

k=1

DY

d=1

f
i
d,k(xd), (11)

[B]i,j(x) =

Ki,jX

k=1

DY

d=1

B
i,j
d,k(xd), (12)

where Ki and Ki,j are the number of components of the func-
tions [f ]i and [B]i,j , respectively. By means of differentiation
matrices and the FPE parameters in separable form on the
discretized grid one obtains a FPE operator L such that

@p

@t
= Lp, (13)

where p is the pdf in tensorized form. In the recent literature,
two different approaches have been proposed to compute a
numerical solution of the FPE for CPD tensors. The first
solution is based on the ALS, where the FPE operator is
augmented with a differentiation matrix Dt for the time
dimension, which is accumulated with the pdf [17]:

(Dt � L)p(x, t) = 0. (14)

Since the trivial solution p = 0 of (14) has to be avoided,
constraints are added to the least squares optimization such
that the pdf is normalized and matches the previous pdf for
the start time.

The second solution uses the tensor exponential of the FPE
operator since it holds that

p(x, tk) = exp { t · L} p(x, tk�1), (15)

where t is the time difference tk � tk�1. Here, the tensor
exponential is approximated by means of a Taylor series [19].

For higher dimensions the problem of finding a decomposed
representation becomes NP–hard [22]. However, numerical so-
lutions such as the Alternating Least Squares (ALS) algorithm
exist [23], which yield satisfying results for the problems
addressed here in manageable time. For a fixed dimension d, it
is assumed that the state space can be discretized into Nd grid
points. These can be uniformly spaced with a fixed step size
of xd or chosen specifically for a numerical differentiation
such as Chebyshev polynomials [18]. The probability density
function restricted to the discretized state space points yields
a D-way tensor, which approximates the original function:

p(xk|Zk) ⇡ [p([xd]i|Zk)]n1,...,nD (4)

Throughout this paper, this tensor is represented in decom-
posed form. Thus, the pdf at time tk is approximated, again,
by a CPD factorization:

[p([xd]i|Zk)]n1,...,nD ⇡
LX

l=1

⇢
(tk)
1,l � . . . � ⇢(tk)D,l , (5)

where L is the number of components, which usually is a fixed
user parameter and dependent on the computational power of
the fusion hardware and processing time constraints, ‘�’ is the
outer product and ⇢

(tk)
d,l are the so–called loading vectors of

dimension Nd ⇥ 1 for each d = 1, . . . , D and l = 1 . . . , L.
By means of an appropriate index function (see [19] for

instance), an equivalent representation of a tensor can be
achieved in its vectorized form:

p(xk|Zk) ⇡
LX

l=1

DO

d=1

⇢
(tk)
d,l , (6)

where ‘⌦’ is the Kronecker product. For the sake of notational
simplicity, the latter form will be used throughout this paper.

It is assumed that the time evolution of the system is
described by a continuous–time stochastic system given by

dx = f(x, t)dt+G(x, t)dw, (7)

where f is the drift vector, G is the matrix of all diffusion
coefficients, and dw are the increments of a multivariate
Brownian motion with covariance Qt.

The measurement model is a general possibly non–linear
function h such that the observation at discrete instants of
time tk are given by

zk = h(xk, tk,vk), (8)

where vk is a random variable, which represents the measure-
ment noise of the sensor.

It is well–known that the posterior pdf conditioned on all
sensor data up to time tk can be computed recursively by
means of a prediction–filtering cycle. In recent publications, a
tensor decomposition based state estimation scheme has been
proposed [17], [18], [19], which shall be summarized in the
remainder of this section.

a) Initialization: For the initialization, it is assumed that
the initial pdf is given in CPD form:

p(x0|Z0) =
LX

l=1

DO

d=1

⇢
(t0)
d,l . (9)

This can either be achieved by an analytical decomposition
into sums of products of a given pdf evaluated at the dis-
cretization points or numerically by the ALS for instance.

b) Prediction: It is well–known that the time evolution
of the pdf is described by a Fokker–Planck–Equation (FPE),
for which the drift and diffusion parameters are given by the
stochastic differential equation in (7):
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where B = GQG
> is the combined diffusion coefficient

matrix. In the above equation, [f ]i denotes the ith entry of
the drift vector and [B]i,j is the entry in the ith row and
jth column of the diffusion matrix. It is assumed that all
components can be represented in separable form such that

[f ]i(x) =
KiX

k=1

DY
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d,k(xd), (11)

[B]i,j(x) =
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d,k(xd), (12)

where Ki and Ki,j are the number of components of the func-
tions [f ]i and [B]i,j , respectively. By means of differentiation
matrices and the FPE parameters in separable form on the
discretized grid one obtains a FPE operator L such that

@p

@t
= Lp, (13)

where p is the pdf in tensorized form. In the recent literature,
two different approaches have been proposed to compute a
numerical solution of the FPE for CPD tensors. The first
solution is based on the ALS, where the FPE operator is
augmented with a differentiation matrix Dt for the time
dimension, which is accumulated with the pdf [17]:

(Dt � L)p(x, t) = 0. (14)

Since the trivial solution p = 0 of (14) has to be avoided,
constraints are added to the least squares optimization such
that the pdf is normalized and matches the previous pdf for
the start time.

The second solution uses the tensor exponential of the FPE
operator since it holds that

p(x, tk) = exp { t · L} p(x, tk�1), (15)

where t is the time difference tk � tk�1. Here, the tensor
exponential is approximated by means of a Taylor series [19].
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The second approach uses the tensor exponential of the FPE operator [10], since it holds that  

 

where Dt is the time difference in the evolution step. Then, the tensor exponential is approximated by a 
Taylor series. During this process, the rank R of the CPD representation of p is increased. In order to have a 
CPD tensor of fixed rank, the result has to be approximated by a numerical decomposition technique again. 
Therefore, both approaches are heavily dependent on efficient decomposition techniques [11].  

The sensor is assumed to produce measurements z at each time step according to the following non-linear 
model: 

where w is zero-mean Gaussian noise with standard deviation σz. If the sensor likelihood p(z|xk) is evaluated 
on the discretized state space, it becomes a N−way tensor L with the same dimensions as the prior p. For the 
Bayesian update, it is required to have the likelihood in CPD form, too. 

Written in tensors, the Bayes update is given by  

 

where * denotes the pointwise multiplication. Since the prediction as well as the update increase the rank of a 
CPD tensor, numerical methods have to be applied to decompose the tensor with a given rank R. 

The working horse of tensor decomposition is the Alternating Least Squares (ALS) algorithm, which 
subsequently minimizes the cost function with respect to an alternating factor matrix A(n), n = 1, …, N. Due 
to the convexity of the cost function, this can be achieved analytically. To this end, the matricization Y(n) of 
the tensor p with respect to mode n is computed: 

 

Here, the dot symbol is the Khatri-Rao (column wise Kronecker) product. Taking the derivative with respect 
to A(n) and setting it to zero yields the iterative update rule 

where the following fact was used: 

Here, the star symbol is the Hadamard (elementwise product), which is more efficient to compute. However, 
the ALS is known to be unstable for ill-conditioned problems. In data fusion applications, such conditions 
can easily appear, since often the density tensor contains many zeros for the state space where no probability 

For higher dimensions the problem of finding a decomposed
representation becomes NP–hard [22]. However, numerical so-
lutions such as the Alternating Least Squares (ALS) algorithm
exist [23], which yield satisfying results for the problems
addressed here in manageable time. For a fixed dimension d, it
is assumed that the state space can be discretized into Nd grid
points. These can be uniformly spaced with a fixed step size
of xd or chosen specifically for a numerical differentiation
such as Chebyshev polynomials [18]. The probability density
function restricted to the discretized state space points yields
a D-way tensor, which approximates the original function:

p(xk|Zk) ⇡ [p([xd]i|Zk)]n1,...,nD (4)

Throughout this paper, this tensor is represented in decom-
posed form. Thus, the pdf at time tk is approximated, again,
by a CPD factorization:

[p([xd]i|Zk)]n1,...,nD ⇡
LX

l=1

⇢
(tk)
1,l � . . . � ⇢(tk)D,l , (5)

where L is the number of components, which usually is a fixed
user parameter and dependent on the computational power of
the fusion hardware and processing time constraints, ‘�’ is the
outer product and ⇢

(tk)
d,l are the so–called loading vectors of

dimension Nd ⇥ 1 for each d = 1, . . . , D and l = 1 . . . , L.
By means of an appropriate index function (see [19] for

instance), an equivalent representation of a tensor can be
achieved in its vectorized form:

p(xk|Zk) ⇡
LX

l=1

DO

d=1

⇢
(tk)
d,l , (6)

where ‘⌦’ is the Kronecker product. For the sake of notational
simplicity, the latter form will be used throughout this paper.

It is assumed that the time evolution of the system is
described by a continuous–time stochastic system given by

dx = f(x, t)dt+G(x, t)dw, (7)

where f is the drift vector, G is the matrix of all diffusion
coefficients, and dw are the increments of a multivariate
Brownian motion with covariance Qt.

The measurement model is a general possibly non–linear
function h such that the observation at discrete instants of
time tk are given by

zk = h(xk, tk,vk), (8)

where vk is a random variable, which represents the measure-
ment noise of the sensor.

It is well–known that the posterior pdf conditioned on all
sensor data up to time tk can be computed recursively by
means of a prediction–filtering cycle. In recent publications, a
tensor decomposition based state estimation scheme has been
proposed [17], [18], [19], which shall be summarized in the
remainder of this section.

a) Initialization: For the initialization, it is assumed that
the initial pdf is given in CPD form:

p(x0|Z0) =
LX

l=1

DO

d=1

⇢
(t0)
d,l . (9)

This can either be achieved by an analytical decomposition
into sums of products of a given pdf evaluated at the dis-
cretization points or numerically by the ALS for instance.

b) Prediction: It is well–known that the time evolution
of the pdf is described by a Fokker–Planck–Equation (FPE),
for which the drift and diffusion parameters are given by the
stochastic differential equation in (7):
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where B = GQG
> is the combined diffusion coefficient

matrix. In the above equation, [f ]i denotes the ith entry of
the drift vector and [B]i,j is the entry in the ith row and
jth column of the diffusion matrix. It is assumed that all
components can be represented in separable form such that

[f ]i(x) =
KiX
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d,k(xd), (11)
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where Ki and Ki,j are the number of components of the func-
tions [f ]i and [B]i,j , respectively. By means of differentiation
matrices and the FPE parameters in separable form on the
discretized grid one obtains a FPE operator L such that

@p

@t
= Lp, (13)

where p is the pdf in tensorized form. In the recent literature,
two different approaches have been proposed to compute a
numerical solution of the FPE for CPD tensors. The first
solution is based on the ALS, where the FPE operator is
augmented with a differentiation matrix Dt for the time
dimension, which is accumulated with the pdf [17]:

(Dt � L)p(x, t) = 0. (14)

Since the trivial solution p = 0 of (14) has to be avoided,
constraints are added to the least squares optimization such
that the pdf is normalized and matches the previous pdf for
the start time.

The second solution uses the tensor exponential of the FPE
operator since it holds that

p(x, tk) = exp {�t · L} p(x, tk�1), (15)

where t is the time difference tk � tk�1. Here, the tensor
exponential is approximated by means of a Taylor series [19].

di↵usion coe�cients can be expressed or approximated
in factorized form:

fi (x) =
KiX
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DY
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f (i)
d,k(xd ), (9)

�i,j (x) := (G(x)G(x)>)i,j =
Ki,jX
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DY

d=1

�
(i,j)
d,k (xd ). (10)

This implies that for a K 2N and some operator matrices
Ak,n [10]

@tvec(P ) = Lvec(P ), (11)

L =
KX

k=1

DO

d=1

Ak,d . (12)

A solution of the FPE is then obtained by a tensor
exponential

vec(P +) = exp(�tL)vec(P ), (13)

where P + is the predicted pdf tensor. While in [10] a
CPD form of P is assumed, we show that this operator
can also be used for the HTD such that a conjugate prior
is obtained for the Bayesian update step.
The sensor is assumed to produce measurements z

at each time step according to the following non-linear
model:

z = h(x) +w, (14)

where w is zero-mean Gaussian noise with standard
deviation �z. This implies that the sensor model is a
Gaussian with

p(z|x) = N
⇣
z; h(x), �2

z

⌘
. (15)

If the sensor likelihood `(x, z) / p(z|x) is evaluated on
the discretized state space, it becomes a D�way tensor
L with the same dimensions as the prior P . For the
Bayesian update (2), it is required to have the likelihood
in CPD form, too:

L = ~L(1), . . . ,L(D)�, (16)

where L(d) 2 RNd⇥R are the loading matrices of the
likelihood with rank R. A solution to compute this CPD
form of the likelihood is proposed in [13].
In the tensor domain (2) reads as

P̂ =
P ⇤LP

i1,...,iD P ⇤L �1 · · ·�D
, (17)

where ‘⇤’ is the Hadamard (point-wise) product of ten-
sors. It turns out that (17) is particular easy to compute
in case of CPD tensors.
This paper addresses the particular problem of com-

puting the CPD form of a multi variate Gaussian density.
This density could either be a likehood function for the
update step or it could be an initial prior. It is assumed

that an expectation vector x0|0 and its error covari-
ance matrix P0|0 are provided. In general, the resulting
multivariate Gaussian has to be evaluated in the full
state space, which implies an iteration over N1 ·N2 . . .ND
discretization points. The resulting operations can be
infeasible in high dimensional filtering problems. Only
in case of a partly of full decorrelation, which means that
the o↵-diagonal elements of P0|0 are zero, the CPD form
can be found analytically. This is due to the fact that
the density factorizes already into D marginals, thus the
discretized pdf is obtained by taking the outer product
of the discretized marginals. The resulting CPD tensor
is then of rank one.
However, the CPD form of an initial Gaussian is not

trivial to find for the general case. A straight forward
approach is to compute the full tensor L with its

Q
d Nd

entries and to apply a numerical decomposition algo-
rithm such as Alternating Least Squares (ALS) [14]. While
this is well possible for small dimensional densities, this
approach will fail in general since the full computation
and its decomposition is hindered by an enormous num-
bero of memory operations. To illustrate the scale let’s
consider a 6-D problem with Nd = 1000 discretization
points in each axis. Using 32 bit floating numbers, this
yields 4,000,000 terrabyte to be processed.
In this paper, a novel methodology to compute the

CPD form of multivariate Gaussian for the initialization
of the update scheme from above is presented. As a
result, we will obtain the discretized initial density

P0 ⇡ N
⇣
x0; x0|0, P0|0

⌘
. (18)

in CPD form such that P0 = ~P(1), . . . ,P(D)� with given
rank R.

IV. CPD of a Multivariate Gaussian
For the computation of the CPD of a given Gaussian

pdf p(x) = N
⇣
x; x̂, P

⌘
we use the fact that the density

function can be written as

p(x) / exp
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(19)

where C = (ci,j )i,j = P�1 is the inverse of the covariance
matrix. Due to the symmetry of C, the inner sum of (19)
can be reduced to

X

i

ci,i (xi � x̂i )2 + 2
X

i,j

(xi � x̂i )ci,j (xj � x̂j ). (20)

As a consequence, the Gaussian is proportional to:
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Our strategy is as follows:

di↵usion coe�cients can be expressed or approximated
in factorized form:
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KiX

k=1

DY

d=1

f (i)
d,k(xd ), (9)

�i,j (x) := (G(x)G(x)>)i,j =
Ki,jX

k=1

DY

d=1

�
(i,j)
d,k (xd ). (10)

This implies that for a K 2N and some operator matrices
Ak,n [10]

@tvec(P ) = Lvec(P ), (11)

L =
KX

k=1

DO

d=1

Ak,d . (12)

A solution of the FPE is then obtained by a tensor
exponential

vec(P +) = exp(�tL)vec(P ), (13)

where P + is the predicted pdf tensor. While in [10] a
CPD form of P is assumed, we show that this operator
can also be used for the HTD such that a conjugate prior
is obtained for the Bayesian update step.
The sensor is assumed to produce measurements z

at each time step according to the following non-linear
model:

z = h(x) +w, (14)

where w is zero-mean Gaussian noise with standard
deviation �z. This implies that the sensor model is a
Gaussian with

p(z|x) = N
⇣
z; h(x), �2

z

⌘
. (15)

If the sensor likelihood `(x, z) / p(z|x) is evaluated on
the discretized state space, it becomes a D�way tensor
L with the same dimensions as the prior P . For the
Bayesian update (2), it is required to have the likelihood
in CPD form, too:

L = ~L(1), . . . ,L(D)�, (16)

where L(d) 2 RNd⇥R are the loading matrices of the
likelihood with rank R. A solution to compute this CPD
form of the likelihood is proposed in [13].
In the tensor domain (2) reads as

P̂ =
P ⇤LP

i1,...,iD P ⇤L �1 · · ·�D
, (17)

where ‘⇤’ is the Hadamard (point-wise) product of ten-
sors. It turns out that (17) is particular easy to compute
in case of CPD tensors.
This paper addresses the particular problem of com-

puting the CPD form of a multi variate Gaussian density.
This density could either be a likehood function for the
update step or it could be an initial prior. It is assumed

that an expectation vector x0|0 and its error covari-
ance matrix P0|0 are provided. In general, the resulting
multivariate Gaussian has to be evaluated in the full
state space, which implies an iteration over N1 ·N2 . . .ND
discretization points. The resulting operations can be
infeasible in high dimensional filtering problems. Only
in case of a partly of full decorrelation, which means that
the o↵-diagonal elements of P0|0 are zero, the CPD form
can be found analytically. This is due to the fact that
the density factorizes already into D marginals, thus the
discretized pdf is obtained by taking the outer product
of the discretized marginals. The resulting CPD tensor
is then of rank one.
However, the CPD form of an initial Gaussian is not

trivial to find for the general case. A straight forward
approach is to compute the full tensor L with its

Q
d Nd

entries and to apply a numerical decomposition algo-
rithm such as Alternating Least Squares (ALS) [14]. While
this is well possible for small dimensional densities, this
approach will fail in general since the full computation
and its decomposition is hindered by an enormous num-
bero of memory operations. To illustrate the scale let’s
consider a 6-D problem with Nd = 1000 discretization
points in each axis. Using 32 bit floating numbers, this
yields 4,000,000 terrabyte to be processed.
In this paper, a novel methodology to compute the

CPD form of multivariate Gaussian for the initialization
of the update scheme from above is presented. As a
result, we will obtain the discretized initial density

P0 ⇡ N
⇣
x0; x0|0, P0|0

⌘
. (18)

in CPD form such that P0 = ~P(1), . . . ,P(D)� with given
rank R.

IV. CPD of a Multivariate Gaussian
For the computation of the CPD of a given Gaussian

pdf p(x) = N
⇣
x; x̂, P

⌘
we use the fact that the density

function can be written as

p(x) / exp

8>>><>>>:
�1
2

0
BBBBBB@

DX

i,j=1

(xi � x̂i )ci,j (xj � x̂j )
1
CCCCCCA

9>>>=>>>;
(19)

where C = (ci,j )i,j = P�1 is the inverse of the covariance
matrix. Due to the symmetry of C, the inner sum of (19)
can be reduced to

X

i

ci,i (xi � x̂i )2 + 2
X

i,j

(xi � x̂i )ci,j (xj � x̂j ). (20)

As a consequence, the Gaussian is proportional to:

p(x) /
Y

i

exp
⇢
�1
2

⇣
ci,i (xi � x̂i )2

⌘�

·
Y

i,j

exp
n
�
⇣
(xi � x̂i )ci,j (xj � x̂j )

⌘
,
o

(21)

Our strategy is as follows:

3

aims to rearrange this tensor to be a matrix Yr×c of size
M∏

k=1
Irk ×

N−M∏

l=1
Icl whose entries

( j1, j2) are given by Yr×c( j1, j2) = Y(ir, ic), where ir = [ir1 . . . irM ], ic = [ic1 . . . icN−M ],
j1 = ivec(ir, Ir), j2 = ivec(ic, Ic).

Remark 2.1.
1. If c = [c1 < c2 < · · · < cN−M], then Yr×c is simplified to Y(r).
2. If r = n and c = [1, . . . , n − 1, n + 1, . . . ,N], we have mode-n matricization Yr×c =
Y(n).

3. Yr×c = YTc×r.
4. For r = [1, 2, . . . , n], c = [n+ 1, n+ 2, . . . ,N], ∀n, Yr×c = Y(r) can be expressed and

efficiently performed by reshape, that is

Y(r) = reshape(Y , [Jn,Kn]), Jn =
n∏

k=1
Ik, Kn =

N∏

k=n+1
Ik. (2.3)

Definition 2.3. (mode-n tensor-vector product) The mode-n multiplication of a tensor
Y ∈ RI1×I2×···×IN by a vector a ∈ RIn returns an (N − 1)-D tensorZ defined as

vec(Z) = YT(n) a. (2.4)

Symbolically, the product is denoted by

Z = Y ×̄n a ∈ RI1×···×In−1×In+1×···×IN . (2.5)

Tensor-vector product of a tensor Y with a set of N column vectors {a} =
{
a(1), a(2), . . . ,

a(N)
}
is denoted by

Y ×̄ {a} = Y ×̄1 a(1) ×̄2 a(2) · · · ×̄N a(N) . (2.6)

Definition 2.4. (CANDECOMP/PARAFAC (CP)) Factorize a given N-th order data
tensorY ∈ RI1×I2×···×IN into a set of N componentmatrices (factors): A(n) = [a(n)1 , a

(n)
2 , . . . , a

(n)
R ]

∈ RIn×R, (n = 1, 2, . . . ,N) representing the common (loading) factors [8, 16, 17], that is,

Y ≈

R∑

r=1
a(1)r ◦ a(2)r ◦ . . . ◦ a(N)r = Ŷ , (2.7)

where symbol “◦” denotes outer product. Tensor Ŷ is an approximation of the data tensor
Y . Mode-n matricization of Y can be represented as:

Y(n) ≈ A(n)
(
⊙
k!n
A(k)

)T
.

2.1. Complexity of Tensor Unfoldings. Tensor unfoldings are to rearrange entries of
tensors to be matrices. We note that entries of the tensorY are stored as a long vector vec(Y)
of the size

∏N
n=1 In in memory. From this view point, tensor unfolding is to change the order

to entries in its vectorization. The more the changes of entries take place, the slower the
unfolding are. Moreover, reading data (entries) stored in non-contiguous blocks will be at a
slower rate than accessing data stored in a contiguous block.

5

Algorithm 1: Direct Computation of Y(n)
(
⊙k!nA(k)

)
[5, 6]

Input: Y : (I1 × I2 × · · · × IN), N matrices A(n) ∈ RIn×R
Output: G(n) = Y(n)

(
⊙k!nA(k)

)
: In × R

begin
1 Y ← permute(Y , [n, 1:n − 1, n + 1:N]) % tensor transposition

2 Y(n) ← reshape(Y , [In, J−n]) % tensor unfolding Y(n)
3 G(n) = Y(n)

(
⊙k!nA(k)

)

efficient than E(n)
(
⊙
k!n
A(k)

)
in the sense of computation because it does not need to construct

the error tensor E. However, since both products involve the same mathematical expression,

we also call Y(n)
(
⊙
k!n
A(k)

)
the CP gradient in which Y is considered as an error tensor.

The CP gradients are employed in almost all CP algorithms. For example, the alternating
least squares (ALS) algorithm [2,8,16,30,31] alternatively minimizes the cost function (2.12)
with an update rule given by

A(n) ← Y(n)
(
⊙
k!n
A(k)

) (
!
k!n
A(k)T A(k)

)†
, (n = 1, 2, . . . ,N), (2.14)

where “†” denotes the pseudo-inverse. A fast implementation of ALS for 3-way tensor [33]
reduces the expensive computation of Y(n)

(
⊙k!nA(k)

)
. Unfortunately, this algorithm cannot

be generalized to higher orders [34]. The all-at-once algorithms such as OPT [1], PMF3, the
damped Gauss-Newton (dGN) algorithms [24–26, 32, 33] compute gradients in their update
rules

a← a − η g , η > 0, (2.15)

or

a← a − (H + µIRT )−1 g, µ > 0, T =
∑

n
In, (2.16)

where a =
[
vec

(
A(1)

)T
· · · vec

(
A(n)

)T
· · · vec

(
A(N)

)T ]T
, H denotes the (approximate) Hes-

sian and g is the gradient defined as

g =
∂D
∂a
=

[ (
∂D

∂ vec
(
A(1)

)
)T
· · ·

(
∂D

∂ vec
(
A(n)

)
)T
· · ·

(
∂D

∂ vec
(
A(N)

)
)T ]T

. (2.17)

For a nonnegative tensor factorization, the well-known multiplicative algorithm [9, 23] also
involves the CP gradients

A(n) ← A(n) !
(
Y(n)

(
⊙
k!n
A(k)

))
⊘

(
A(n)

(
!
k!n
A(k)T A(k)

))
, (n = 1, 2, . . . ,N). (2.18)

The direct computation of the product Y(n)
(
⊙k!nA(k)

)
for single mode is illustrated in

Algorithm 1, and is implemented in the mttkrp function of the Matlab Tensor toolbox [5,6].

and performance evaluation

dz

dx
=

dz

dy

dy

dx
(16)

y = yN = fN � fN�1 � . . . � f1(x) (17)

dy

dyj
=

j+1Y

i=N

dyi
dyi�1

(18)

f2 fi fi+1 (19)
dy

dyN�1

dyN�1

dyN�2

dyj+1

dyj

dy1
dx

(20)
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E : x 7! h (22)
D : h 7! x (23)

A = D � E (24)
1

2
||Y � Ŷ||2 (25)

0

@
K

k 6=n

A(k)

1

A
> 0

@
K

k 6=n

A(k)

1

A =~
k 6=n

A(k) >A(k) (26)

a =

✓
vec

h
A(1)

i>
. . . vec

h
A(N)

i>◆
(27)

a  � a+
�
J>J+ ✏1

¯
��1

Jr (28)

r = vec
h
Y � Ŷ

i
(29)

R = ||(Dt � L)p(x, t)||2 + ↵||Np(x, t)� p(x, 0)||2

+ �||Mp(x, t)||2 + �||Bp(x, t)� 1
¯
||2

2
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mass is present. 

A more robust algorithm is the damped Gauss-Newton (dGN) [12], which can well be applied to find the 
minimum of the cost function. A straight-forward formulation can be achieved by vectorizing all parameters 
of interest: 

Analogously, the residuum vector r is defined as 

Let, in addition, J be the Jacobian with respect to the vectorized parameters. Here, automatic differentiation 
can be used to compute the gradient. Then, the iterative dGN step is given by  

where e > 0 is a regularization parameter. After each update, the Matrix J and the vector r have to be 
computed. 

5. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the gradient based methods for tensor decompositions of multi variate 
probability densities in a discretized field of view. Tensor decompositions are a highly efficient method to 
compute and store the posterior information in a fusion engine centric application. The Bayesian recursion 
can be solved by means of the Fokker-Planck-Equation for the prediction and a point-wise multiplication 
with additional normalization for the update step. In each of step, usually the rank of a Canonical Polyadic 
Decomposition increases. This implies an increased volume of data to be processed and stored. Therefore, 
optimization based techniques have to be applied such that the rank is fixed at a given number, depending on 
the approximation quality trade off. Modern frameworks which include automatic differentiation can be used 
to automatically compute the gradients and to apply a gradient descent methodology. 
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